If $\alpha ,\,\beta ,\,\gamma ,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$ , then the value of $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to
$2\sqrt {\left( {1 - k} \right)} $
$\frac{1}{2}\sqrt {\left( {1 + k} \right)} $
$2\sqrt {\left( {1 + k} \right)} $
None of these
$cos (\alpha \,-\,\beta ) = 1$ and $cos (\alpha +\beta ) = 1/e$ , where $\alpha , \beta \in [-\pi , \pi ]$ . Number of pairs of $(\alpha ,\beta )$ which satisfy both the equations is
$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to
Let $\theta \in [0, 4\pi ]$ satisfy the equation $(sin\, \theta + 2) (sin\, \theta + 3) (sin\, \theta + 4) = 6$ . If the sum of all the values of $\theta $ is of the form $k\pi $, then the value of $k$ is
The number of distinct solutions of the equation $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ in the interval $[0,2 \pi]$ is
Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then