If $\alpha ,\,\beta ,\,\gamma ,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$ , then the value of $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to 

  • A

    $2\sqrt {\left( {1 - k} \right)} $

  • B

    $\frac{1}{2}\sqrt {\left( {1 + k} \right)} $

  • C

    $2\sqrt {\left( {1 + k} \right)} $

  • D

    None of these

Similar Questions

The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to

The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to 

If $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, then $x = $

If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is

If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is